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1. Introduction 

If 

. f : Y  ~ X  

is a continuous map between connected C W  complexes, then the natural right 

action of the loop space f~X on the homotopy fibre F of f makes H , ( F )  into a 

right module over the graded algebra t t , ( f l X ) .  A second important homotopy 

invariant of f is its Lusternik-Schnirelmann category, eat f:  the least ra < 

oo such that Y can be covered by roT1 open sets Ui with each f[v~ homotopieally 

constant. The main purpose of this paper is to establish a relation between cat f 

and certain homological invariants of the module H,(F) ,  namely its projective 
dimension and its positive projective grade. 

These invariants are defined as follows. Here and throughout we work over 

a fixed principal ideal domain R (so that H . ( - ;  R), ®R and HomR are denoted 

respectively by H . ( - ) ,  ® and Hom). Modules over graded algebras A are by 

definition graded and if M, N are A-modules then 

HomA(M; N) = {HomA(M; g)i}i~z 

is the graded R-module whose ith component H o m A ( M ; N )  i consists of the 

A-linear maps sending each M i to Ni_i. The corresponding derived functors 

Ext~t = {Ext~'}i,z also take values in graded R-modules; i is called the inter- 
nal degree. 

The projec t ive  dimension of an A-module M is the greatest n (or oo) such 

that Ext~t(M; - )  ~ 0. The projective grade of M is the least m (or oo) 

such that Ext~(M;V)  ¢ 0 for some projective A-module, V. The positive 
(resp. negative) projective grade of M is the least m (or oo) such that 

Ex t , (M;  V) ¢ 0 for some A-projective V generated by V>0 (resp. by V<0). 

Thus proj.gradem(M ) is the lesser of the positive and negative projective grades. 

Observe also that if A = {Ai}i>0 and if M = {Mj}j>_-q then 

(1.1) pos.proj.gradeA(M) _< proj.dimA(M). 

Indeed, neither side of (1.1) is affected if degrees in M are increased by q; i.e. 

we may assume M --- {M/}j>0. Then M has a projective resolution of the form 

• "" ~ Pk d Pk-1 --* "'" with each Pk concentrated in non-negative degrees. 

Now if proj.dimA(M ) = n then K ,  = ker(d: P,-1 --+ Pn-z) is A-projective, so 
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that 0 ~ K,, ~ Pn-1 "--* "'" is also a projective resolution. Moreover the identity 

map of Kn represents a non-zero class in E x t , ( M ;  K,~), which establishes (1.1). 

We can now state our main result: 

THEOREM A: Let F be the homotopy fibre of a continuous map f :  Y ---* X 

between path connected CW complexes, and suppose H.(F) and H.(f~X) are 

both R-free. Then 

(i) pos.proj.gradeg.(~x)(H.(r)) <_ cat f .  

(ii) When equality holds in (i) then also 

pos.proj.gradeH.(nx)( H.( F) ) = proj.dimH.(nx) ( H.( F) ). 

To compare this with earlier results we need first to recall for modules M over 

graded algebras A that gradeA(M ) is the least m (or oo) such that E x t , ( M ;  A) # 

0. And the depth (resp. (pos.)proj.depth, cohomological dimension) of an aug- 

mented graded algebra A ---* R is the grade (resp. (pos.) proj. grade, proj. 

dimension) of the trivial A-module, R. 

Evidently pos.proj.gradeA(M ) _< gradeA(M ). Moreover, equality holds if R is 

a field, A = {Ai}i>_o and each Ai is finite dimensional over R: 

(1.2) pos.proj.gradeA(M ) = gradeA(M ). 

In fact if pos.proj.gradeA(M ) = m then E x t , ( M ;  P)  # 0 for some non-negatively 

generated A-projective P. Now P is a retract of a free A-module V ® A with 

V = V>__0. And if v~ is a basis of V then V is a retract of the vector space 

Q = II R .  v,~, where we have taken the product in the category of graded vector 

spaces. It follows that E x t , ( M ;  1~" @ A) # 0. Finally, our hypothesis on A implies 

that V ® A = YI,~ a .  v~. Hence E x t , ( M ;  1? ® A) = H~ Ext~'(M; A) .  v~, and 

(1.2) follows. 

Now in Theorem A consider the special ease that R is a field and f is the 

identity map of a simply connected CW complex X for which each Hi(X; R) 

is finite dimensional. The conclusions then read: depth H.(~X) <_ eat f ,  with 

equality implying depth H.(~X) = eoh.dimH.(flX).  This is precisely Theorem 

A of [6], established earlier in [5] for the ease R = Q. Thus our present result 

extends the earlier one by: 

(i) Passing from spaces to maps. 
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(ii) Extending to the non-simply connected case. 

(iii) Removing the hypotheses that H,(X) be of finite type and that R be a 

field. 

The hypothesis of finite depth leads to general structure theorems for loop space 

homology, as is shown in [6], [7], [8] and [9]. Thus the restricted form of Theorem 

A in [6] implies that when X is a 1-connected CW complex of finite type and finite 

LS category then H,(~)X) satisfies these structure theorems. With the aid of 

Theorem A we can now give (Theorem B below) an additional large class of spaces 

where these theorems hold. And, as an illustration in the non-simply connected 

case, we also give an application (Theorem C) to the properties of 7rl(X) when 

X and its universal cover have the homotopy type of finite complexes. Other, 

less immediate, applications will be established in a subsequent paper. 

THEOREM B: Let f: Y --, X be a continuous map between path connected CW 

complexes, such that H.(~f)  is R-split injective. If H,(flX) is R-free then 

pos.proj.depth H, (flY) _< cat f. 

If equality holds then also pos.proj.depth H,(f~Y) = cola.dim H,(f~Y). 

Proof." Let F be the homotopy fibre of f .  There is then an f~Y-principal fibration 

~ y  n I  f/X P* F, with p an flX-equivariant map. When H,(f~X) is R-free 

a standard Serre spectral sequence argument shows that the following conditions 

are equivalent: 

(i) H , ( n ] )  is R-split injective, 

(ii) The Serre spectral sequence for p collapses at E.2, = H.(nY)® H,(F) and 

E,2,, is R-free; 

(iii) H,(p) is R-split surjective and 7rl (p)is surjective. (Note that this holds even 

in the slightly complicated case when X and Y are not simply connected, 

so that F may not even be path connected.) 

Thus under the hypotheses of the theorem, H,(F) is R-free and H,(p) factors 

to give an isomorphism, 

R ®H.(flY) H,(nX)  ~-, H,(F), 

of right H,(nX)-modules. For the sake of simplicity, denote H.(nY) c H.(nX) 
b y K C G .  Then 

(1.3) E x t c ( H , ( F ) ; - )  = ExtG(R ®K G; - )  = E x t g ( R ; - )  
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since G is left K-free. 

But reversing loops in Y and X induces anti-isomorphisms of the homology 

algebras K and G, so that G is also right K-free. Moreover any K-projective 

generated in degrees > 0 is a retract of some V ® K,  V = V>0 and hence of 

V ® G. Thus (1.3) gives 

(1.4) pos.proj gradeH.¢ax)(H,(F)) = pos.proj.depth(H,(12Y)), 

and so the first assertion of Theorem B reduces to Theorem A(i). 

For the second assertion let P,  be a G-free resolution of R, and consider the 

exact sequence 

o ~ ker d,, ~ P,, ~ Im d,, ~ 0 

of G-modules. If cat f = pos.proj .depth(K) = pos.proj.gradeG(H,(F)) = n, it 

follows from Theorem A(ii) and from (1.3) that Ext~-(Im dn; N) = 0 for any G- 

module, N. Ill particular Extk.(hn d,;  ker dn) = 0 Thus the short exact sequence 

above splits over K and so coh.dim(K) = n. l 

Remark 1.5: (i) As observed in the proof, the hypothesis that H,(gtf)  be R-split 

injective is equivaleut to: H,(F) is R-free, r,(p) is surjective and H,(gtX) acts 

transitively on H,(F).  

(ii) Formula (1.4) furnishes many examples of cyclic modules H,(F) for which 

gradeH.(ax)(H,(F)) > depth H,  (12X). For instance let f be the inclusion Y --* 

Y V Z = X with ]I, Z simply connected spaces of finite type having non-trivial 

homology with coefficients in a field, R. Then H,(~tX) = H . ( ~ Y ) I I H , ( f I Z )  has 

depth one. On the other hand H,(FtY) can have arbitrarily high depth. (If Y is 

a product  of spheres then depth H,(12Y) is the number of factors.) And formula 

(1.2) together with (1.4) gives depth H.(FtY) = gradeH.(~x)(H.(F)), l 

We come next to our application of Theorem A to fundamental groups. Recall 

[1; Chap. VIII] that an FP~(R)  group is a discrete group F such that R has a 

projective R[F]-resolution in which each term is a finitely generated R[F]-module. 

THEOREM C: Suppose the universal cover, f( ,  of a connected C W  complex X 

satisfies: d imHi( f f  ; Zp) < oo, ali i,/'or some fixed prime p. Suppose 

1 = Fo ~ F, ,~.-. ,~ F ,  C ~rl(X) 

is a sequence of subgroups with each Fi normal in Fi+I. If each Fi/Fi-1 is an 

infinite F Po~( Zp )-group, then 

cat X > n. 
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COROLLARY: d i m X  > n. 

Proof: Pass to a suitable cover to reduce to the case Fn = ~'1 (X). Then apply 

Theorem A to the classifying map f:  X ~ K(F , ;  1), noting that cat f < cat X,  

F = .~ and ~ K ( F , ,  1) ~ F , ,  to conclude that for some i, 

pos.proj.grade.g[r,](Hi(.X; 7,,p)) < eatX. 

Let G ,~ F,, be the normal subgroup of elements acting trivially on Hi(.fC; 7.v). 
Since Hi(re; Zp) is finite by hypothesis, G (resp. Gk = G fl Fk) has finite index 

in F ,  (resp. in Fk). It follows as in [1; VIII, Prop. 5.1] that each Gk/Gk-1 
is an infinite FPoo(Zp)-group. The standard "melding of projective resolutions" 

~rgument then shows that each Gk is an FPoo(Zp)-group. 

This in turn implies [1; VIII, Theorem 4.8] that Extzp[ek](Zp;-) commutes 

with direct limits. In particular 

depth Zp[G] = pos.proj.depthZp[G]. 

On the other hand the Hochschild-Serre spectral sequence shows that 

pos.proj.depth Zp[G] = pos.proj.gradezp t6q (Hi (X; Zp)) 

_< pos.proj.gradezp[r,l(gi(.~; Zp)), 

and so altogether 

depth Zp[G] _< catX. 

Theorem C will now follow from the inequalities 

(1.6) depth Zp[Gk] < depth Zp[Gk+l]. 

To establish these we use the FPoo(Zv) condition to identify 

ExtzptGhl(Zp; Zp[Gk+l]) 

as a free Zv[Gk+l/Gk]-module M. Since Gk+l/Gk is infinite, 

Ext~p[vh+,/Gkl(Zp; M)  = 0. 

Thus (1.6) follows from the Hochschild-Serre spectral sequence. | 
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Remark: Note that the action of 7rl(X) on H.()()  that arises in Theorem C is 

that induced by the covering transformations. | 

The rest of this paper is taken up with the proof of Theorem A. In §2 we re- 

call basic definitions including certain properties of the classical Eilenberg-Zilber 

maps and their application to chains on joins and Hopf spaces. In §3 we remark 

(Theorem 3.1) that when cat f = m there is an ~X-equivariant map from the 

homotopy fibre F to the mth iterated join (~X)*m; this is essentially an observa- 

tion of Ganea's. This observation is then translated into a factorization theorem 

for C.(~X)-modules (Theorem 4.8) using the machinery of §2. Finally, in §5 we 

prove Theorem A via some homological calculations starting from Theorem 4.8. 

2. Conventions and pre l iminary observations 

We work over a principal ideal domain R and write Horn and ® for HomR and ®R- 

Graded objects M = {Mi} (including chain complexes, graded and differential 

graded algebras, etc.) are Z-graded and the degree of m E M is written ]ra]. 

Differential graded algebras are called DGA's. 

Chain complexes have differentials of degree -1 and we also use Hom and 

® to denote the corresponding functors in the (differential) graded context; e.g. 

Hom(M; N) -p = Horn(M; N)p = Hi Hom(Mi; Ni+p) and df = d o f - ( - 1 ) l / I f o d .  

The suspension s M  is defined by (sM)k = M~-I and dsx = - sdx .  The homol- 

ogy functor is denoted H ( - )  and morphisms f are homology isomorphisms 

(resp. chain equivalences) if H ( f )  is an isomorphism (resp. f has a bomotopy 

inverse). 

Algebras have an identity T/: R --~ A and their multiplication-# is associative. 

A (right) A-module  over a DGA is a chain complex M with a chain complex 

morphism M ® A --* M making M into a module over the underlying graded 

algebra. If N is a second A-module then HomA(M; N) C Hom(M; N) is the sub- 

chain complex of A-linear maps; in particular a morphism is a cycle of degree 

zero in HomA(M; N) and two morphisms are A-homotopic  if their difference 

is a boundary. An A-module is A-free if it has the form C ® A, with C an 

R-free chain complex and action by right multiplication; if the differential in C 

is zero it is A-free on a basis of cycles. An augmented  A-module  over an 

augmented DGA: A ~* R is a surjective morphism M ~, R of A-modules. 

The augmenta t ion  kernel will be denoted I M  = ker e. The suspension s M  of 

an A-module is an A-module via ( s z ) . a  = s ( z .  a). 
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A (d i f fe ren t ia l )  g r a d e d  H o p f  a lgebra ,  or (D)GH, is an augmented 

DGA: A • R 

together with a morphism A: A --* A ® A (the d iagonal )  satisfying (A ®id)o A = 

(id ® A) o A and (~ @ id) o A = id = (id @ ~) o A. A c o n j u g a t i o n  is a degree 

zero chain map w: A ~ A for which ~t o (w ® id) o A = # o (id ® w) o A = r/¢. 

Conjugations (if they exist) are unique, and anti-isomorphisms of Hopf algebras. 

If M and N are A-modules then M ® N  is an A®A-module; hence an A-module 

via A; we say A acts diagonally in M ® N. 

LEMMA 2.1: Suppose A is a DGH with conjugation w. If  M and N are A- 

modules and N is A-free then the A-modules M ® N (diagonal action) and 

M ® N (action: (m ® n) .  a = m ® n .  a) are isomorphic. 

In particular i f  M is R-free then M ® N is A-free. 

Proof'. We may suppose N = A (action by right multiplication). Let a: M ® A  --+ 

M be the action on M. Then the desired isomorphism and its inverse are given 

by (a  ® id) o (id ® w ® id) o (id ® A) and (a ® id) o (id ® A). | 

Fix a DGH, A (possibly A = R) and let M be an augmented A-module. 

The cone  on M is the augmented A-module cM = M ~ s I M  with d(x, sy) = 

(dx + y , - s d y ) .  If M ~ is a second augmented A-module the inclusions ~, ~l of 

M, M'  in their cones define an inclusion 

= ~ ® id - id ® ~': M ® M'  ~ [cM ® M'] @ [M ® cM'], 

and the j o in  M * M ~ is the augmented A-module 

U * U '  = [cU ® U ' ]  ~ [M ® cM'] 

Im~ 

with diagonal action. 

We now turn to topological spaces where we work entirely in the category of 

Hausdorff compactly generated spaces X with appropriate product and mapping 

space topologies as described in [16; I §4]. In particular the Moore path space 

M X  C X [°'°°) x [0, c¢) consists of those ( f , r )  with f ( t )  = f ( r )  for t _> r, 

and its properties, with different notation, are described in [16; III, §2]. Thus, 

writing - x M X  and M X  × - for the fibre products with respect to ( f ,  r) ~ f (0)  
x x 
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= = × M X  × {a} and (f ,  r) ~ f ( r ) ,  we note that P X  M X  xX{a} and f~X {a} x x 

are the path and loop spaces at a E X and that composition is a continuous 

map M X  x M X  -* M X  which makes f iX into a topological monoid acting 
X 

continuously from the right on P X .  Letting v: f /X --* f iX be the path reversing 

map we see that f iX is a Hopf space in the sense of 

De/~nition 2.2: A H o p f  space  is a topological monoid G with a self map v such 

that z ~ x . v ( z )  and x ~ v ( z )  . z are homotopic to the constant map. An 

ac t i on  of G on a space X is a continuous map a: X × G ~ X which is a right 

action of the monoid G on the set X. | 

Hopf space actions of loop spaces arise as follows. Let ¢: Y ~ X be any 

continuous map, and fix a base point a E X. Then 

p: E = Y x M X  ~ X ,  p(y,  ( f ,  r))  = f ( r ) ,  
X 

is the conversion of ¢ to a fibration and F = p - l ( a )  is the homotopy fibre of ¢. 

Note that F = Y x P X  and so composition defines an action of f i x  on F.  
X 

We next recall how singular chains C , ( - )  = C , ( - ;  R) convert Hopf spaces and 

Hopf space actions into differential graded Hopf algebras and modules. First note 

that the constant map X --* pt provides a natural augmentation e: C . ( X )  --* R,  

while any x E X determines j~: R ~ C.(X);  j~(r)  = r . x .  We write I C . ( X )  = 

kere. For the multiplication and diagonal we shall need the explicit natural 

classical Eilenberg-Zilber chain equivalences of augmented chain complexes 

(2.3) C , ( X )  ® C , ( Y )  ~, C , ( X  x Y )  ~'. C , ( X )  ® C , ( Y )  

as defined for instance in [2] and [14; Chap. VIII, Theorems 8.8 and 8.5]: ,~ 

is obtained from the standard triangulation on the product of two Euclidean 

simplexes and A is the front face-back face map of Alexander and Whitney. 

It is standard and straightforward (cf. [14; Chap. VIII, §8]) that x and )~ are 

strictly associative homotopy inverses and that the Alexander-Whitney diagonal 

A: C . ( X )  --* C . ( X )  ® C . ( X )  is just A o C . ( A x )  , AX:  X --~ X x X denoting the 

topological diagonal. Moreover if 

(2.4) inter: M ® N ~ N ® M and inter: X x Y ~ Y x X 

are defined respectively by m ® n ~ ( -1) l 'q l 'qn  @ m and (x ,y)  ~-* (y,x)  then 

x o inter = C.(inter) o ~¢ - -  cf. [14; Chap. VIII, §8]. Less well known, but equally 

straightforward is the next lemma: 



186 Y. FELIX ET AL. Isr. J. Math. 

LEMMA 2.5 ([3; §17]): The following diagram commutes: 

C,(X x X') ® C,(Y x Y') 

"1 
C,(X x X' x Y x Y') 

intero(~®A) C,(X) ® C,(Y) ® C,(X') ® C.(Y') 

I ~ @ K  

. C,(X x Y) ® C,(X' x Y') AoC. (inter) 

Remark 2.6: Regard C,(X) as a differential graded coalgebra with diagonal A. 

Then Lemma 2.5 implies that to: C,(X) ® C,(Y) ~ C,(X x Y) is a coalgebra 

morphism. | 

Now suppose a: F x G --~ F is the action of a Hopf space with multiplication 

m and identity e. Define 

= C, (m)  o ~: c , ( a )  e c , ( a )  -~ C,(G),  

a = C,(a) o ~: C , (F)  ® C,(G)  ~ C,(F).  

PROPOSITION 2.7: With the hypotheses and notation above: 

(i) ( O,( G),I~,A,¢,je) is a differential graded ttopf algebra. 

(ii) a makes C,(F) into a C,(G)-module. 

Proof." This is an essentially immediate consequence of the observations above 

about x and A, including Remark 2.6. | 

COROLLARY 2 .8 :  

(i) H(G) is a graded algebra and H(F) is an H(G)-module. 

(ii) If H( G) is R-torsion free then it is a graded Hopf algebra with conjugation. 

Proof." It suffices to use the Kunneth homomorphism H(C)®H(D) ~ H(C®D), 

which is an isomorphism if C, D are R-free and H(C) is R-torsion free. The 

conjugation is H(v),  v the homotopy inverse of G. | 

If a Hopf space G acts on X it acts on the cone  CX = I × X/{o} × X via 

(t, z) .g = (t, x.  g). If G also acts on Y it acts (diagonally) on the product X x Y 

and on the jo in  X * Y = (CX x Y) Ox×v (X x CY). On the other hand, if M 

and N are any two augmented C,(G)-modules then M ® N is a C,(G)-module 

(diagonal action). Thus the cone cM and join M * N defined above also inherit 

a natural  C,(G)-module structure. 
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PROPOSITION 2.9: Suppose a Hopf space G acts on spaces X and Y. Then 

(i) A: C , ( X  x Y)  ~ C , (X)  ® C, (Y)  and A: C , (X)  ~ C , (X)  ® C , (X)  are 

C,( G)-linear. 

(ii) There is a natural sequence o[ C,( G)-linear chain equivalences of augraented 

modules, connecting C,(X)  * C , (Y)  with C , (X  * Y). 

Proof: The first assertion follows at once from Lemma 2.5. There are natural 

chain equivalences, 

C, (X)®C, (X)  __ C , ( C X )  _ C , (CX)  
(2.10) cC,(X) + C,{o} ® I C , ( X )  ~ C+(pt----~" 

with ¢ defined by ¢: (x, sy) ~-~ {1} ® x + [0, 1] ® y and ~ induced from A. Thus 

¢ is C,(G)-linear by (i) and ¢ is by definition. 

On the other hand the inclusions C X  x Y , X  x C Y  --~ X * Y define a C,(G)- 

linear chain equivalence 

U, (CX x Y ) @ C , ( X  x CY)  =) C , (X  , y ) .  
C , (X  x Y)  

We apply A to the chain complex on the left to replace "×"  by ®, then use (2.10) 

to replace C , ( C - )  by cC,( - ) ,  arriving in this way exactly at C, (CX)  * C,(CY) .  
| 

3. G a n e a ' s  f lb ra t ions  

Recall that the join X * Y of two topological spaces is defined by X * Y = 

(CX  x Y )  tJx ×y (X  x CY).  If a Hopf space G acts on X and Y it acts diagonally 

on X * Y and hence on the n-fold jo in  X *n defined inductively by X *° = X and 

X *(n+l) = (X  *n) * X.  The purpose of this section is to prove 

THEOREM 3.1: Let F be the homotopy /~bre of a map f: X ~ Y between 

connected C W  complexes. If cat f <_ m then there is an ~X-equivariant map, 

F - ~  ( n X )  *m. 

Remarks 3.2: (i) As we shall see, this assertion is essentially implicit in two 

results of Ganea. 

(ii) It is reasonably clear that the existence of the equivariant map F --~ 

(~X)  *ra characteriz¢~ maps of category < m. We have not included a proof 

since we do not need the stronger result. | 
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P roof  of 3.1: Recall that the f lb re -cof lbre  c o n s t r u c t i o n  of Ganea, applied to 

a fibration E P, X over a pointed space (X, a) consists of extending p to 

¢ = p O const.map: E OF C F  ---} X ,  F = p - l ( a )  

and then converting ¢ to a fibration p': E '  ~ X (as described in §2). 

Iterating this construction (starting with the path space fibration for path 

connected (X, a)) Ganea produces the sequence of fibrations 

n x  FI F~ F= 

,ol ,q ,q ,q 
P X  • E1 . E2 . . . . .  E,,, 

X 

And in [11, Prop. 2.2] he shows that connected C W  complexes X have category 

< m if and only if the fibration pm admits a cross-section. His argument, however, 

applies verbatim to maps f :  Y + X and shows that cat f < m if and only if f 

factors as 

f : Y  g ' E m  P"~ .X  

(provided Y is a path connected C W  complex). 

Thus in the situation of Theorem 3.1 we have g, and hence the commutative 

diagram 
Y x M X  (g,id) • E . ,  x M X  composition. E,n 

x x 

X 

in which p is the conversion of f to a fibration. In particular we have an f~X- 

equivariant map 

(3.3) F + Fro. 

We now complete the proof by constructing an ~X-equivariant weak homotopy 

equivalence 

(3.4) F m +  (f~X)*"*. 
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i 

To do so suppose E '  P , X is obtained by converting some arbitrary map Z --~ X 

to a fibration, and apply the fibre-cofibre construction to obtain E II P", X.  In 

[10; Theorem 1.1] Ganea shows that the fibre F "  of p" has the weak homotopy 

type of F I * f~X, F I the fibre of p t  We need this equivariantly; explicitly 

LEMMA 3.5: There is an fX-equivariant  weak homotopy equiva/ence 

F "  --* F I * f X .  

P roof  of 3.5: Write 

Ftt = ( E  t UF' CF' )  x x  P X  = (E' x x  P X )  UF'xllx (CF'  x f X ) .  

This identifies F "  as the d o u b l e  m a p p i n g  c y l i n d e r  T(i, pr2) of the inclusion 

i: F'  x ~ X  ~ E'  x x  P X  and the second factor projection pr2: F '  x f X  --* f X .  

On the other hand, composition gives weak homotopy equivalence 

¢ : E ' x x P X = Z x x M X x x P X - - * Z x x P X = F ' ,  

and 5 o i is the action a: F '  x fLX --* F ' .  Thus ¢ extends in the obvious way to 

a weak homotopy equivalence 4): F "  = T(i,  pr2) --* T(a, prz). 

Moreover, a weak homotopy equivalence ~b: F '  x f iX --* F '  x ~ X  is given by 

¢: (v,w) ~ ( v .  w,w). It satisfies pr I o ~b = a and pr 2 o V = Pr2, and so extends 

naturally to a weak homotopy equivalence ~: T(a, pr~) --* T(pr l ,  pr2). 

But T(pr l ,p r2)  is precisely F '  * ~X,  and it is straightforward to verify that 

o (I) is fX-equivar iant  with respect to the diagonal action on F '  * f X .  | 

We now revert to the proof of Theorem 3.1. An obvious induction using Lemma 

3.5 gives (3.4), and (3.3) and (3.4) give the Theorem. | 

4. C h a i n  f a c t o r i z a t i o n  

Our goal is to translate Theorem 3.1 into a result on C.(QX)-modules.  This 

requires two notions of "resolution", one for DGA modules (due essentially to 

Moore [15]) and one for DGH-modules (which goes back to the original construc- 

tions of group cohomology). 

Suppose then that M is a right A-module, A a DGA. Denote by w M  the R- 

' e~lz a cycle in M,x  E M} with de z = O, free chain complex on the basis {ez, %, 

de" = e~ (levi = IzJ, le'l = Ixl)- Define A-modules W , M  and A-linear maps 

(4.1) 0.+2 W , + I M  o.+, ol ~M • , W . M ~  . . . .  Wo M , M ~ O  
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by: 
I t t  ( i )  W o M  = wM ® A, eM: ez,ex,e,~ ~ z , z ,  dz ,  

(ii) WIM = sWo(kereM), 01(su) = eker~(u) ,  and 

(iii) Wn+IM = sWo(kerO,~); O,,+l(su) = eker o. (u). 

Passage to homology gives the sequence 

(4.2) 

--* It(W,,+IM) H(O) H(WnM) 4 . . .  ~ tI(WoM) H(,M) t I (M)  ~ O. 

Denote the differential in each WnM by Or, so that 

W M  = ( ~  WnM, d= OI + O) 
n>_o 

is an A-module, filtered by the submodules W<,M. Extend gM (by zero in 

W+M) to a morphism eM: W M  --* M of A-modules. We shall need the 

LEMMA 4.3: Let A be a DGA and M be an A-module. Then 

(i) Each (W,,M, 0i) is A-free. 

(ii) The sequence (4.1) is exact and e M : W M --* M is a homology isomorphism. 

(iii) The sequence (4.2) is an H(A)-free resolution of H(M). 

(iv) The functor HomA(WM;- )  preserves exact sequences and homology iso- 

morphisms. 

Proo~ The first three assertions are immediate and the exactness of 

HomA(WM; - )  = H HomA(W~M; - )  
R 

follows from the fact that each W , M  is A-free. Now every A-module morphism 

is the composite of an injective homology isomorphism and a surjection (both of 

A-modules) and so we need only show HomA(WM; ¢) is a homology isomorphism 

whenever ¢ is an injective or surjective homology isomorphism. 

Since HomA(WM;- )  is exact it suffices to show that H(HomA(WM; N)) = 

0 if H(N) = O. Suppose o~: W M  --* N is a cycle and a[W<.M = dO. By 

construction W , M  = (Z @ C) ® A with Z, C both R-free, d: Z ~ W<nM and 

d: C ~ (Z ® A) ® W<~M. 

Recall now that dO = doO+(-1)l~lOod. We observe that a-(-1)l~lOod: Z --* 

cycles of N. Since H(N) = 0 and Z is R-free we can extend 0 to Z so that ~ = dO 

in Z. Extend 0 to an A-linear map in Z ® A and repeat the argument to extend 

it to C ® A; i.e., to all of W<n. Conclude by induction that a = dO. II 
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Remark  4.4: If we are given the commutat ive diagram of A-modules 

g ! 

1/  
W M  ¢ , N  

Q 

in which H(p)  is an isomorphism and e and e'  are surjective then we can construct 

d): W M  ~ N '  such that  pqt is A-homotopic to ¢ and e ~ o ¢ = e o ¢. 

In fact, Lemma 4.3(iv) gives ¢': W M  --* N '  and p~b ~ - ¢  = dO with a morphism 

0 e H o m A ( W M ;  N) I .  Because H o m A ( W M ;  - )  is exact we can find 

0' E H o m A ( W M ;  N ' )  

such that  e '  o 9' = e o 8. Set ¢ = ¢' - dO'. | 

Next, suppose A is a differential graded Hopf algebra with augmentat ion ideal 

I .  Define right A-modules R n A  by R~A -- A ® (sI)  ®', n > 0 (tensor product of 

chain complexes with diagonal action of A), and denote the differentials by O1. 

Again we have a sequence of A-linear maps 

(4.5) ~ R , + I A  o R n A  ~ . . . ~  R o A =  A • R ~ O 

in which O(x ® syl ® .." @ s y , )  = e(x)yl  ® sy2 ® . . .  ® syn. Again R A  = 

(~n>o  RnA,  0 -= O~ + cO) is an A-module filtered by the submodules R<_nA and 

again e extends (by zero in R+A) to a morphism e: R A  --* R. 

LEMMA 4.6: The sequence (4.5) is exact and e: R A  --* R is a chain equivalence. 

Proof." Define h ( x Q s y l  ® . . . ® s y , )  = 1 ® s x Q s y l  ® . . .®sy~;  then hcoi +Olh = 0 

and hco + Oh = id - ~e. | 

Note next that  for any right A-module M we can extend e to the morphism 

(4.7) idM ® e: M ® R A  --~ M 

of A-modules, with A acting diagonally in M ® RA.  We can now state the main 

result of this section. 
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THEOREM 4.8: Let F be the homotopy fibre of a map f: X --* Y between 

connected CW complexes. If cat f <_ m, then there is a commutative diagram of 

C,( ~ X  )-modules: 

WC, (F)  ¢~ , C,(F) ® n<mc, ( f lX)  

C,(F) 

Remark 4.9: Suppose f = idx and X is a simply connected rational space with 

finite (rational) betti numbers. The existence of a diagram as in Theorem 4.8 

(here F = PX!)  implies M cat X < m and hence by a theorem of Hess [12] 

together with [4; Theorem VIII] cat X _< m. Thus in this case the existence of 

the diagram is equivalent to cat X <_ m. A recent example of Idrissi [13] shows, 

however, that this equivalence fails for maps f:  Y ~ X, even in the simply 

connected rational case. | 

Proof of 4.8: Our first step is to show that R<_mC,(~X) is connected to 

C,((f/X) *m) by a sequence of C,(ftX)-linear chain equivalences of augmented 

modules. In fact, given Proposition 2.9 (ii) it is sufficient to observe that a 

C,(flX)-linear chain equivalence of augmented modules, 

n<kc.(~X) • C,(~X) --, R<k+lC.(~X) 

is given by (C = C,(flX),/=augmentation ideal): 

(R<kC) * C = [c(R<~C) ® C l ~ [R<kC ® sI] (as R-modules) 

--, C $ [R<kC ® sl] 

= R<k+~C. 

On the other hand, Theorem 3.1 gives a C,(~X)-linear map r: C,(F) --* 

C,( (~X)*")  and Proposition 2.9 (i) asserts that A: C,(F) --* C,(F) @ C,(F) is 

also C,(ftX)-linear. We assemble all this in the diagram of C,(~tX)-modules: 

WC,(F) ~ * C,(F) a • C.(F)®C,(F) 

C.(F) ~ R<~,C.(aX) 

• C.(F) 

xd®~ c,  (F) ® c,  ((nx) °~) 
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Evidently the composite C,(F) ~ C.(F) ® C.(F) ~ C.(F) ® C.((f~X) *m) ---* 

C.(F) is just idv.(f), and so we can apply Remark 4.4 to achieve the proof of 

the theorem. 1 

5. Homological calculations 

Here we complete the proof of Theorem A and its corollary, with the aid of 

Theorem 4.8 and the homological calculations of the title. These take place in 

the following context: we fix a differential graded Hopf algebra A and a right 

A-module M, subject to the following restrictions: 

(5.1) H(M) and H(A) are R-free, and concentrated in non-negative degrees. 

(5.2) H(A) is a Hopf algebra with conjugation. 

(5.3) There is a commutative diagram of A-modules, 

W M  ~ • M®R<,~A  

M 

Then we have 

THEOREM 5.4: Vnaer hypothese  (5.1), (s.2) and (5.3), 

pos.proj.gradex(A)(H(M)) < m. 

I[ equality holds then 

pos.proj.gradeH(A)( t t  ( M) ) = proj.dimH(A)( H ( M) ). 

Before proving the theorem we note that if f: Y ~ X is a continuous map of 

connected CW complexes with homotopy fibre F,  and if H(F)  and H ( ~ X )  are 

R-free, then (5.1) and (5.2) are satisfied by C.(F)  and C.(f~X). If, in addition, 

cat f < m then (5.3) is exactly Theorem 4.8. Thus Theorem A follows from 

Theorem 5.4. 

Proof of 5.4: Filter W M  and M ®R<mA respectively by the submodules W<_,M 

and M®R<_nA. Then, although ¢ (in (5.3)) need not preserve filtrations, it raises 

them by at most m. The proof of the theorem consists essentially of the next 

two lemmas. 
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LEMMA 5.5: Suppose pos.proj.gradeH(A)(H(M)) > m. Then the map ¢ in (5.3) 
can be chosen to preserve filtrations. 

Proof  5.5: Suppose ¢ raises filtration degree by at most k (1 < k < rn). Then 

it induces a "morphism" Ei(¢):  E~,q(WM) ~ Eip+~,q_k(M ® R<m) of spectral 

sequences. For simplicity we put Ei(M ® R<mA) = E i. 
Now observe that we can regard Ei(¢) e HomH(A)(Ei(WM);Ei)k,-k as a 

cycle of bidegree ( k , - k )  in the chain complex of bigraded H(A)-linear maps. 

Moreover, since 

EI'*= ( Ho (M)®H(A)®H(sI)®q q > mq<m 

there are short exact sequences of chain complexes 

0 --* E 1 --* E 1 <q,. <_q,. ~ (H(M) ® H(A) ® H(sI) ®q) --~ O, q < m. 

And since each E~,.(WM) = H(WpM) is H(A)-free, this sequence is trans- 

formed by HomH(A)(EI(WM);-).,. into a short exact sequence of chain com- 

plexes terminating in C(q) = SOmH(A)( E 1 (WM);  H( M) ® H( A ) ® H ( sI)®q).,.. 
But (E I(WM), d ' ) i s  the g(A)-free resolution (4.2) of H(M). Thus 

--s+q,--q--t H~,t(C(q)) = EXtH(A) (H(M);  H(M) ® H(A) ® H(sI)®q). 

Finally, since H(A) has a conjugation by (5.2), Lemma 2.1 asserts that H(M)® 
H(A) ® H(sI) ®q (diagonal action) is a free g(A)-module  on a basis of ele- 

ments of degree > 0. Thus the hypothesis pos.proj.gradeH(A)(H(M)) > m 
gives Hs,t(C(q)) = 0, s > 0. Since this is true for each q < m it follows 

that Hs,.(HomH(A)(Et(WM);EI)) = 0, s > 0. In particular, E1(¢) = da for 

some a EHomH(A) (E 1 (WM);  E l )k+l,-k. 

Next, identify 

(E°(WM), d °) = (WM, 0I) and (E °, d °) = (M ® R<,,A, d ® 1 + 1 ® 0I). 

Thus E°,.(WM) = WpM has the form L(p) ® A for some R-free chain complex 

L(p) with R-free homology. It follows that the restriction of a to each H(L(p)) 
has the form H(av) for some d°-cycle ap E Hom(L(p); E°+k+l,.). Extend ap by 

A-linearity to all of WpM and put a = {ap} and ¢' = ¢-da. Then (idQc)¢' = eM 

and E1(¢ ') = 0. 
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But since E1(¢ ') = 0, E°(¢ ') restricted to L(p) has the form d°hp for some 

hp: L(p) ---* ~°+k,.. Put  ¢" = ¢' - dh, verify again that  (id ® ~)¢" = ~M and 

notice that ¢" raises filtration degree by at most k - 1. | 

LEMMA 5.6: If  the map ¢ in (5.3) preserves filtrations then 

Proof: 
h a v e  

proj.dimu(a)(H(M)) < m. 

Consider the same spectral sequences as in Lemma 5.6 and note that we 

H..(WM,0I) st(c), H..(M ® R<,,A, ~) i,¢lu,ion, H..(M ® RA, 6) 

H(M) 

where 6 = d ® 1 4- 1 ® 01. It is straightforward to verify that 

H(~): (H(RA, 01), O) --* R 

is a chain equivalence, and so by Lemma 2.1 id ® H(e) is an H(A)-free reso- 

lution of H(M). Thus the diagram above shows that the lift of idn(M) to a 

map of H(A)-free resolutions factors through a complex of length m. Hence 

proj.dimH(A)(H(M)) <_ m. II 

To complete the proof of Theorem 5.4 it suffices to recall (1.1) that 

pos.proj.gradeH(A ) _< proj.dimH(A)(H(M)) 

and to apply the two lemmas. | 
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